

Sat-Light Gold Series

GL7130 Optical Link for 10MHz Reference Signals

Features & Benefits

- Optimized for transmission of 10MHz Reference Signals
- 10Km Transmission Distance
- Selectable AGC/MGC
- Front Panel Test Port
- Selectable LNB Powering
- Powerful Monitoring Features
- Compatible with all 1st Generation
 Sat-Light Products

Product Description

Foxcom's Sat-Light/Gold 10MHz Reference Signal Link offers a high performance, cost effective alternative to conventional coaxial-cabled systems. The Gold 10MHz Reference Signal optical link is designed for to meet the needs of a wide range of Satellite and professional VSAT applications. Foxcom's high dynamic range DFB laser delivers exceptional signal quality for the most demanding applications.

The new Gold series is compatible with first generation Sat-Light 7000 Series platform. The Gold Series support L-Band, 70/140MHz IF, Wide Band (10-2200 MHz), 10MHz Reference, Redundancy, M & C, SNMP, Ethernet, and Serial Data Communication.

The link consists of a high dynamic range optical transmitter, which converts incoming 10 MHz reference signals into optics, and an optical receiver that re-converts the optical signal back into RF. Inherently low phase is achieved by direct modulation of the laser diode.

GL7130 RF Optical Link 10MHz Reference Signal, 4dB Optical Budget								
RF Specifications	Units	Typical	Minimum	Maximum				
Frequency Range	MHz	10MHz						
Link Gain	dB	Adjustable	-10	+10				
Amplitude Response @ Unity Gain 5 - 15 MHz	dB			2.5				
Gain Stability	dB/24hr	±0.25		±0.3				
SFDR ¹	dB/Hz		100					
CNR ¹	dB	65	60					
Noise Figure (NF) ²	dB	20		23				
Output IP3 (OIP3) ²	dBm	+30	+20					
Third Order InterModulation [IMD] ⁴	dBc		55	40				
Group Delay Variation- linear 10-20MHz	ns	5		6				
Input Signal Range – Total Power	dBm		-25	+5				
Output Signal Range - Total Power	dBm		+15	+10				
Maximum Input without Damage	dBm		+15					
Input/Output Impedance	75 or 50							
TX/RX Input/Output return loss 50 Ohm 75 Ohm	dB	-15 -13		-15 -13				
RF Connector Type Input/Output Test Port		F, SMA BNC						
Test Port [front panel sample port]	dB	-20	-22	-18				

Optical Specifications		Typical	Minimum	Maximum	
Optical Power Output	dBm	3	2	4	
Optical Budget / Distance 4 dB optical budget	dB/Km	1310 nm 1550 nm 8 15			
Optical Connector Types		FC/APC			
Optical Wavelength	nm	1310/1550/CWDM			

Digisat International Inc. 4195 W. New Haven Ave., Suite 15 Melbourne, FL 32904 USA +1-321-676-5250

Email: sales@digisat.org http://www.digisat.org

Electrical Specification				
Supply Voltage	Vdc	13	12.7	18
Supply Current [TX] ⁵	Amp	0.4		
Supply Current (RX)	Amp	0.3		
Physical Specifications				
Operating Temperature Range			-10	+55
Dimensions [D×W×H]		5.1x4.9x1.6		
MTBF	Hours	TX: 309, 481 RX: 359, 057		

- 1. -5 dBm RF input, link gain =10dB, IMD=-40 dBc @ 3 dB opt. budget
- 1. -25 dBm RF input, link gain =20dB, IMD=-40 dBc @ 3 dB opt. budget
- 2. 0dBm RF Output, IMD=-40dBc
- 3. User adjustable
- 4. Under 10°C add 120 mA [laser heating]

Ordering Information

Example: Plug in module, L-band, low RF input, 1310nm laser, F-Type RF connector and FC/APC optical connector

8508 0 0 0 0